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Abstract

This paper proposes numerical methods for random temperature field in mass concrete structures to research various
kinds of random variability including both random environmental temperature and random material properties. First
presented, based on local average method of random field, are the formulas of random variational principle as well as
the corresponding formulas of stochastic FEM. Then discussed is the stochastic spectral response finite element
method, given the complex frequency functions as random functions of material parameters, to resolve the effect of
random environmental temperature. Finally, the Taylor expansion series is referred to simplify the non-stationary
process and suggest the corresponding formulas for the effect of random hydration heat of concrete. The paper
demonstrates that these proposed methods can help to study conveniently the random variability of temperature, which
could appear as both random processes and random fields in mass concrete structures. Numerical examples calculated
by the methods, theoretical and Monte-Carlo simulation are also provided. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Thermal stress can sometimes act as a principal factor for the failure of concrete structures. Accordingly,
it is important to evaluate correctly the temperature of mass concrete structures during both the con-
struction period and operation period. However, random variation of both environmental temperature and
material properties has a significant influence on the temperature in mass concrete structures. It is necessary
then to consider the temperature in mass concrete structure as a random temperature field.

The research was pioneered by Heller with his co-workers (Heller 1976a,b; Heller et al., 1979, 1983), who
applied spectral method (the method of power response spectrum). This analytical solution is, however,
inapplicable to concrete. Based on the Bessel and Kelvin functions, Tsubaki and Bazant (1982) suggested a
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Nomenclature
T temperature /] Jacobi determinant
t time T matrix of transformation
x,y,z  spatial coordinates in global coordinate ¢ standard deviation
system [,m,n orientation cosine
., . . . .
x.,y.,7 spstu;ali coordinates in local coordinate Subscripts
syste . 7,7,  temperature solution of heat conduction
T column matrix of temperature . .
. equation-I and equation-II
a temperature transfer coefficient . S
. . . P12 correlation function in the oxy plane of
b coefficient of surficial heat emission .
. .. the specific random field
A coefficient of thermal conductivity . . ;.
. 03 correlation function along z' axis of the
0 hydration heat of concrete .
. specific random field
T, environmental temperature . .
. . . 0 component of the correlation function
n, number of different kinds of environ- v . oy 1 .
tal t ¢ matrix at the ith line and the jth column
menial temperature [, differentiation with respect to the kth
n number of scalar random fields .
T initial temperatur random variable
0 al temperature . S; the ith scalar random field
0o, m;  parameters of concrete hydration heat .
. Su local average in the element V;
X random variable o . } X
ik, jI  the kth Gaussian point of ith element
S() random field . . .
. . and the /th Gaussian point of jth element
A fluctuation part of environmental tem- . X .
([,); value at the /th Gaussian point with re-
perature h h nod
h(w)  column matrix of complex frequency spect Lo the mth node .
. s value at the kth Gaussian point
function
N shape function Superscripts
Ty number of random variables 7O temperature field of the heat conduction
N, number of nodes equation-11)
E[] expectation AU temperature field of the heat conduction
var[]  variance . equation-1" (i = 1,2,...,n,)
cov[] covariance ar temperature at the ith node
R[] auto-correlation function [ transpose
p correlation function of random field [T conjugate
14 element volume p¥(:) correlation function of the ith scalar
& n,{ local coordinates . random field
H, Gaussian weighted coefficient ¢ transformation matrix of the ith scalar
Ny number of Gaussian points random field

method of impulse response functions, which can be used for non-stationary aging system. However, it is
computationally inefficient and sometimes the impulse response function can not be conveniently obtained.
The generalized spectral method (the spectral finite element method) recommended by Bazant and his co-
workers is based on the fact that the environmental effect can be adequately described by only a few sinu-
soidal components (Bazant, 1982, 1986; Bazant and Wang, 1984a,b,c; Bazant and Liu, 1985; Bazant and
Xi, 1993). Evaluation of random temperature in computer structures has been done by Suzuki et al. (1988),
Oktay and Kammerer (1982) and Shigekazu et al. (1993), among many others. However, by the suggested
methods, neither random environmental factors nor the random heat source (in concrete structures is
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hydration heat) has been taken into account. Therefore, these methods are not applicable to concrete
structures.

Stochastic finite element method, a very efficient method to analyze random stress and deformation of
large structures, has been developed for more than 10 years. There is a lot of literature, among which the
study done by Hisada and Nakagiri (1982), Vanmarcke and Shinozuka (1986), Ghanem and Spanos (1991),
Kleiber and Hien (1992), Zhu et al. (1992) should be mentioned. At present, however, it is known that, for
large and complicated structures, the stochastic finite element method can only be implemented for two
cases: one is that when material parameters are considered as random fields (or random variables), loads
can not be simulated as random processes (random excitation). The other is that when loads are modeled as
random processes, material parameters should be constant.

In order to analyze of random temperature field of mass concrete structures, material properties of
concrete including temperature transfer coefficient and surficial heat emission coefficient should be modeled
as random field or random variables. Meanwhile, the loads e.g., heat source or environmental temperature,
should be modeled as random processes. For this reason, a new method for the stochastic finite element
analysis needs to be employed.

The main purpose of this paper is to develop numerical methods of evaluating the random temperature
field of mass concrete structures. The suggested methods are based on extended stochastic FEM, by which
the effect of both random environmental temperature and random material properties can be conveniently
taken into account.

2. Descriptions

According to the theory of heat conduction, temperature field 7'(¢,x, y, z) is the solution of the following
equation:

or _ 2 20
a:_“v T+at

T)_o = To(x,»,2) (1)
g_: c = _é(T - T“)

in which a is temperature transfer coefficient; b is surficial heat emission coefficient; A is coefficient of
thermal conductivity; 7, is environmental temperature; T, is initial temperature of concrete; 0 is hydration
heat of concrete. This equation can also be expressed in the form of functional extreme value:

I(T):///Q{%VZT+%(%—€—%>T}dQ+//C(%Tz—b*TaT>ds:min 2)

in which, b* = b/A.

As for mass concrete structures such as concrete gravity dams and arch dams, the environmental
temperature 7, is the temperature of air surrounded or the temperature of water. Therefore, the environ-
mental temperature can be generally expressed as follows:

ng

T,() =T, + Zmo (3)

in which, 7,(¢) is the environmental temperature; 7, is a part of 7,(¢) independent with time ¢
T.(t) (i=1,...,n,) is a periodic stationary random process (sine or cosine process).
As for the temperature process of environmental air, we have:

T,(t) = Tysino(t — ty) + Ty (4)
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where f, is the beginning time; 74, T3 are random variables, the statistics of which can be obtained from
observational data. Therefore, for the air temperature in Eq. (3), we have: 7,, = T, n, = 1. Moreover, as for
the random temperature process of the water in reservoir, we have (Zhu et al., 1976)

Tm = Twm(Z)

na =2

Tu(t) = Ay(z) cosw(t — 1) cos[e(z)]

To(t) = —Ay(z) sinw(t — ) sin[e(z)]

(5)

in which, T, (z) is the expectation of water temperature (°C) in the depth of z; 4,,(z) is the modulation

function of the water temperature; w = 2rt/12. In addition, &(z), a function of z, usually can be written as

&(z) = ¢1 + caexp(—csz), in which ¢y, ¢, and ¢; can be regarded as random variables or just constants.
Hydration heat 6(¢) is often expressed as follows (Zhu et al., 1976):

0(t) = Oy[1 — exp( — myt)] (6)
in which, 6y and m, are random variables. Hence, in Eq. (1), we have

o0

6_1 = 00m1 exp(—mlt) (7)

Obviously, 00/0¢ is a non-stationary process. Under the influence of 00/0¢, the system output (structural
temperature field) is also a non-stationary process. Regarding large and complicated structures which have
random material properties and need to be simulated by finite element method, there have been no reports
on effective and efficient methods up to now for the case of external excitation, modeled as a non-stationary
process. For this reason, this paper uses the first order Taylor expansion series to simplify the non-
stationary process 00/0¢ as follows:

20, a8

ot ot ot

0

5 = 00}’711 exp(—r?zlt)

0A0  _ _ S~ _

F ~ mp eXp(—mlt)AQO + (00 — Qomll> exp(—mlt)Aml (8)
where 0, and m, are the expectation of 6, and m,, respectively.

A0y = 0y — 0,

Am1 = my — I’hl (9)

By using Eq. (8), the non-stationary process 00/0¢ is simplified as fi(¢) + f>(¢)Aby + f3(¢)Amy, where f;(2),
f2(¢) and f5(¢) are definite functions of time.

The initial temperature 7; and concrete material parameters a, A and b can be simulated as random fields
(Vanmarcke and Shinozuka, 1986; Zhu et al., 1992). If auto-correlation coefficient function of each random
field is approximately equal to 1.0, or the auto-correlation coefficient function can not be obtained due to
insufficient observational or test data, these parameters can be approximately regarded as random vari-
ables. Although the auto-correlation function of these parameters can not be easily obtained, for the in-
tegrity of this paper, the method of random field discretization in conjunction with the random variational
principle is still applied and developed for random temperature field.
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3. Random variational principle

According to Eq. (2), the first order functional variation of temperature can be obtained as follows:

n= [ [ [arlerre (55 ) ae- [ [orxa|Gera-n]a-o (10)

in which, 0T /0n denotes the differentiation of T with respect to the orientation cosine of the normal di-
rection at the boundary of integration.

Let X (x,y,z) denote a random field or a random variable, and let S(X,x, y,z) denote a random function,
which could be the random temperature function 7, 7, as well as the random parameters 0, a, b and A. The
random function S can be expanded into the first order Taylor series at the point (x,y,z) and the expec-
tation of the random field X (x,y,z) as

dx (11)

X

v aS X? b )
S[X(XaJ’aZ),%y,Z] ~ S[ (xayvz)vxvyvz] + (%)

In the above equation, it should be noticed that differentiation of the parameters a, b and 1 with re-
spect to themselves are 1.0, while the differentiation with respect to other parameters are zero. Let
dX = (X — X)e, where ¢ is a very small positive number. Then the above equation can be written as the first
order perturbation equation

S=5+28 (12)

in which, the prime denotes differentiation with respect to random variables.
Substituting the above equation into Eq. (10), we have

(a) The zero order variational principle
/ / oT x a

00 oT
[ [ [arfovre ()
0
(b) The first order variational principle

_ o0 or
- /// 5T[(a’V2T+EzV2T/) + (———)

0 o ot

orT’ b’l by
[ [arx [ VAL r gy
A

As there is time ¢ in Eqs. (13) and (14), the above variational principle can also be termed as the instan-
taneous variational principle for random temperature field, which can be used to deal with the influences of
random parameters such as 7, 0, a, b and 1. The influences of random environmental temperature and

hydration heat of concrete being involved with time effect, can be handled by the methods discussed in the
following sections.

+b*(

’ﬂ\
H\
.L.
O..
O
—
—
w2
S~—

//STxa

(T — T(j)] ds =0 (14)

> S

4. Numerical studies

Up to now, many studies have been made on the random field discretization in conjunction with SFEM,
such as those by Vanmarcke and Shinozuka (1986), Zhu et al. (1992). There are several methods for the
discretization of random fields have been suggested, among which the local average method is readily
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adopted in this paper for its simplicity, efficiency and its insensitivity to the correlation structures of
random fields (Vanmarcke and Shinozuka 1986; Zhu et al. 1992).

When the structure is discretized into iso-parametric finite elements, suppose that random fields being
considered are discretized into ¢ parametric elements, according to the concept of local average of random
field (Vanmarcke and Shinozuka, 1986), we have

q g g
X(x,p,2) = Z (PfZX(iky Mie» Si) | [ i ZJ|ka‘| (15)
k=1 k=1

i=1

in which, if (x,y,z) € Q; (€; as the domain of the ith element), ¢,(x,y,z) = 1, otherwise, ¢,(x,»,z) = 0;n, is
the number of Gaussian point; H, is the weighted coefficient for the kth Gaussian point; |J| is the Jacobi
determinant; &, #, and ¢, are local coordinates of the kth element. From Eq. (15), correlation coefficient of
random fields can be obtained. Specific formulas are shown in Appendix A. Let the random temperature
field be discretized into N, elements and N, nodes, we have:

NP
T:E}Mﬂ:NT
i=1

Np
— ZMTII — NT'

i=1

(16)

where N is global displacement shape function and T is global temperature column matrix. When the node
being considered is in a specific element e, we have N; = N{, in which N7 is the shape function of the element
e; otherwise, N; = 0. Notice that T' = >"7 | T, AX/, substituting Eq. (16) into Egs. (13) and (14), stochastic
element formulas for the random temperature can be obtained.
(a) The zero equation
K1T+K2%—T+F:0 (17)

in which
ON; ON; 6N ON; 0N, ON;
= [/// <6x ay 6y+62 % )dxdydz+a// NNds] (18)

&:Z//[MM&@& (19)

(<[ [ [ Svaweraf [ Do) )

(b) The first order equation
o _ OT,
KT, + K,—X

1y + Ky o

+F, =0 (k=1,2,....n) (21)

where the subscript & denotes the kth random variable; n, is the number of random variables, and:
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T T T
<6N ON ON' ON ON 6N>T NT@H 40

Ox 6x+ oy 6y+ 0z Oz ot

AL
//ak_NTNTds+// Uz M’fNTNTds—// NT< —bA LT, +2T;k>ds
A

—//a;NTgTads (k=1,2,....n) (22)

It should be noticed that the differentiation with respect to time ¢ is involved in the finite element for-
mulas of Egs. (18) and (21). In practical calculation, the formulas should be written into following equa-
tions, which are based on the finite difference method with respect to time:

2 7. 2 7. _ _

|:K1 + EKzil T‘c + |:K1 - EK2:| TT—AT + F‘C*AT + Fr =0 (23)
2 T 2T, , ,

K, + EKZ T, + | Ki — EKZ Tyene) + Frong T Fie =0 (24)

in which Ar is time interval. -
From Eq. (17), the expectation of temperature T can be obtained. Moreover, from Eq. (21), T, can be
calculated. As a result, the covariance of temperature field can be obtained as follows:

ny Ny

cov('T,UT ZZ T <V T xxCOV(Xe, Xi) (i =1,2,...,N,) (25)

in which @7 denotes the temperature at the ith node, and /7] denotes the differentiation of the temperature
at the ith node with respect to the kth random variable.

5. Influences of random processes

It is clear that the aforementioned studies have not considered time effect of the random hydration of
concrete and random environmental temperature, but only the influences of random material parameters.
If, however, the influences of both random hydration heat and random environmental temperature are
taken into account in the same equation (Eq. (1)), the problem will become too difficult to be solved.
Considering that the thermal problem discussed is within the scope of linear system. Therefore, the heat
conduction equation (Eq. (1)) can be separated into two equations: (a) heat conduction equation-I for
environmental random temperature process and (b) heat conduction equation-II for random hydration
heat process.

(a) Heat conduction equation-1

on
ot

o7,

o0 b
al’ T1|, 0= (X »,z )a on

+57

aV>*T, + -
¢ A

b
- zTa (26)

¢

According to Eq. (3), the above equation can be further separated into two parts as:
(a0) Heat conduction equation-11*
or” o 00

270) (0 or"”
—aviT® £ 1O~ bl W
6[ av 1 + at? 1 -0 0(x7y7z)7 6}1

=27, (27)

and (al) Heat conduction equation-19 (i =1,2,...,n,)
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ory” 2 00 ) on’| b _b
il M T — T =0, — TV =27, 28
o VI e L= | TEh T (28)
(b) Heat conduction equation-11
o7, ) O0A0 o7, b
2 AV = T —0 = T =0 29
at a 2+ at ) 2‘1‘:0 ’ an C+;b ZC ( )

Obviously, 75 is produced by the fluctuation part of hydration heat and hence 7> = 0. From Egs. (26)-(29),
we have:

=1
which satisfies Eq. (1).

Upon calculating the random temperature of each part from the above heat conduction equations, the
total random temperature field can be obtained:

ng

T=T+hL=7"+> 1\"+1 (31)
i=1

var(T) = var(T}) + var(Ty) = var(T\") + Zvar(Tl(i>) + var(7) (32)
i-1

in which covariance among the three parts is neglected. Actually, after the differentiation of temperature
with respect to random variables have been calculated, the covariance among the three parts can also be
obtained, and we have:

var(T) = var(Ty) + var(Tz) + 2cov(Ty, T») (33)

5.1. Numerical procedure for heat conduction equation-I1"

In this case, as random process factors are not involved (see Eq. (27)), the method of instantaneous
variational principle and corresponding stochastic finite element formulas can be used. However, it should
be mentioned that the effect of random initial temperature 7; is not explicitly taken into account by the
aforementioned methods. The initial temperature can be written as

Ty = Ty + AT,

34
var(Ty,) = var(Ty, . ar,) = var(Tar,) (34)

in which, the symbol Ty, denotes temperature field caused only by the initial temperature field 7.
Notice that in Egs. (23) and (24), where only the effect of initial temperature is taken into account, we
have F = 0 and F' = 0. Therefore, a recursive finite element formula for var(7,z,) can be written as follows

var(Ty,), ~ — [(Kl — Azr,- K2>/<K1 + Azr,- K2>]2var(TT0)l._1 (35)

in which, var(Try,); denotes column matrix of temperature variance caused by the random part of T, at
the ith time step. At; =¢; — t; ;. Therefore, the influence of Ty, becomes smaller and smaller with time
increasing.
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As the direct use of Eq. (34) to calculate the random effect of initial temperature is very time-consuming,
the convenient method is that 7 is still regarded as a basic random variable in all calculations of Egs. (17)—
(25), so long as letting 07 /0T, = 1 when ¢ = 0.

5.2. Stochastic spectral response finite element method

According to the theory of random vibration, for a time invariant linear system, under excitation of
random process 4 exp [io(t — ty)], structural response Y can be obtained by the spectral response method
(Lin, 1967)

Y = Ah(w)expio(t — 1)) (36)

in which A(w) is the complex frequency response function. In the aforementioned heat conduction equa-
tion-1" (i = 1,2,...,n,), the environmental temperature 7,; (i = 1,2,...,n,) is a periodic stationary ran-
dom process. Therefore, the spectral response method can be used. In ordinary analysis, however, the
frequency response function is usually considered as a definite function. In order to take the effect of
random material parameters into account, this paper takes the complex frequency response function as a
function of both random material parameters and the random variable A. Statistics of the random function
can be obtained by stochastic spectral response finite element method.

As the environmental temperature 7, is a spatial random process, after the discretization of finite ele-
ments, it should be written as

Ta = Aexpio(r — 1)) (37)
Hence, corresponding temperature column matrix can be written as
T = h(w)Aexplio(t — 1)) = H(w) exp[io(t — 1)] (38)

in which H(w) = h(w)A, while h(w) is complex frequency response function matrix. The ith column of h(w)
is the complex frequency response function of all nodes caused by the excitation of the ith node. Substi-
tuting Egs. (37) and (38) into finite element formulas of heat conduction equation: K;T + K,0T /0t + F = 0,
we have

KiH(w)exp[io(r — ty)] + ioK;H(w) exp [io(t — 1)) + F =0 (39)

b .
F= —Z:a//cg zN,«NAexp [io(t — )] ds (40)
Eliminating exp[iw(z — )] from the both hands of Eq. (39), we obtain
. b
(K; + i0K,)H(w) = ze:a / / - NiNAds (41)
The above equation is finite element formula of spectral response method for random temperature field.

Based upon perturbation method, the corresponding stochastic finite element formulas can be deduced as:
(a) The zero order equation

(K, + oK) H(0) = Y a / / %:N,NAds )

(b) The first order equation
(Ki +i0K)H, (0) =F,  (k=1,2,...,n,) (43)
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. B B B b/ a _ B A/' _
B = ~(Ki oK) + Y a [ [ 2nNaas+ Y [ [ 2 PEnaas
_ b
+Za// ZNNAds (k=1,2,....n) (44)

From Egs. (42)-(44), H(w) and H;(w) (k=1,2,...,n,) can be obtained. According to the theory of
complex random process (Papoulis, 1965), auto-correlation function matrix of T can be written as

R(wytlthat()) = E[T(w7t1at0)T*(w7tZat0)] (45)

in which T"(w, f,1) is conjugate of T(w,1,%). E[-] denotes expectation. Substituting Eq. (38) into the
above equation, we obtain

R(CO, tta, tO) _ E{H(w)eiw(n —ty) [H(w)eiw(tz—to)] *T} (46)
Notice that

H(ow) ~ H(w ZH/ (47)

which can be substituted into Eq. (46) as:

_ . *T
R((,L), t] 9 t27 t()) H( ) it 1) |:H((J)) elw([zft()):|

v *T
ZZH/ m) (t1—to) |:H/ ( ) 1w (tr— to)j| COV(Xk,X[) (48)
=1 I=
When #, = t,, the above equation becomes
B ny Ry +T
R(w,1,10) ~ H(w [ a) ] v ZZH’ [ (@ } cov(X;, X)) (49)
Obviously, diagonal column of R(w, t,#) is variance-mean square of T
E(T?) = [A(o) ‘ + Zfﬂf ()] var(X,) (50)
Therefore, the variance of temperature field T = (N7, T, ..., (NP>T)T can be written as
var(OT) = E(V7?) —E(OT)E(O7) = 3 |9H) ()| var(X)  (i=1,2,...,N,) (51)

k=1

5.3. Numerical procedure for the heat conduction equation-II

It is known from Eq. (29) that only two random factors 0y and m, are involved in the heat conduction
equation-II. Since the non-stationary random process 06/0¢ has been simplified as Eq. (8) and T, = 0, only
the first order finite element equation is needed, which can be written as:
kL F, =0 (k=1,2) (52)

. OT
KiTy, + K, 2
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Fa=— / / N' [ﬁile’m"Aﬁgk+(§0—éomlte”i’")Am/lk dxdydz (k=1,2) (53)
Q

Upon calculating T, from the above equations, the auto-covariance of the temperature field T, can be
obtained as follows:

2 2
cov[V7, V] =33 "0ry| T cov(Xi, Xi) (54)

=1 1=1

in which X1 = Ago, X2 = Aml.

It should be mentioned that, although this heat conduction problem is involved with only two random
factors, when the random field properties of which should be taken into account, more than two random
variables will appear after the random fields have been discretized by the local average method. Therefore,
in Egs. (52)-(54), when random field properties should be taken into account, only when the correlation
functions of the random fields are equal to 1.0, the number of random variables n, equals 2; otherwise,
ny > 2, and the subscript k should be from 1 to n, (n, > 2).

6. Numerical applications

According to the methods suggested in the above sections, a program named STEM (in FORTRAN
Language) is coded. This program integrates various kinds of random factors such as random initial
temperature, random material parameters and random environmental etc. to make easier the calculation of
random temperature fields of large mass concrete structures during both construction period and operation
period. Numerical examples are followed to testify the program and the presented methods.

6.1. Example 1

Considering an unconstrained concrete slab shown in Fig. 1 (Wang, 1985), air temperature on the right
side of the slab is T,; = 0, and surficial heat emission coefficient is b; = 6.0 kcal/m? h °C. Air temperature on
the left side is T,, = Acosw(t — ty), and by = 12.0 kcal/m* h°C. w = 7.169 x 10~* 1/h. Thickness of the slab
is 2.6 m. Coefficient of thermal conductivity is 4 = 1.25 kcal/mh °C. Temperature transfer coefficient is
a = 0.00217 m?/h. Finite element mesh is shown in Fig. 2.

When only the fluctuation A4 is considered as random variable (4 = 8°C, standard deviation is 1.6°C,
Gaussian distribution), the result is calculated as in Table 1. This result is obtained by considering the
complex frequency response function as a function of random variable 4 (see Eq. (50)). The theoretical
solution was given by Wang (1985). The same result can be obtained by the spectral finite element method
suggested by Bazant and Wang (1984a). It is known that the satisfied precision comes from the spectral
approach, because the material parameters are constants.

It can be seen from Table 1 that, although the standard deviation of air temperature is 1.6°C at the
boundary of x = 2.6 m, the corresponding standard deviation is less than 1.6°C. Further, the air tempera-
ture is a constant (0.0°C) at the boundary of x = 0.0 m, while the corresponding standard deviation is not
zero because of the heat conduction.

6.2. Example 2

A, a, by, by and / in the above example are further studied as random variables, all supposed to
be Gaussian distributed and variance coefficients are 0.2. At this stage, both random environmental
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A VA
b, b,
XA
T,=Acosw(t—t,) r,=0
<+— 2.6m —P»

Fig. 1. Unconstrained concrete slab.

Fig. 2. Finite element mesh.

Table 1

Standard deviation (only 4 is random variable)
x (m) 0.0 1.3 2.6
Theoretical 0.0800 0.8000 1.5200

This paper 0.0809 0.8001 1.5212
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Table 2

Standard deviation (4, a, by, b, and A are random variables)
x (m) 0.0 1.3 2.6
SFEM 0.1993 0.9934 1.5396
Monte-Carlo 0.1974 0.9914 1.5389

temperature (random excitation) and random material parameters are involved. However, theoretical so-
lution can not be obtained, and the spectral finite element method is not applicable to this problem either.
Therefore, Monte-Carlo simulation is used to verify the results calculated by the suggested stochastic finite
element method. The results are shown in Table 2.

It can be seen from Table 2 that, although the random properties of material parameters are taken into
account, the standard deviation of the temperature at the left side of the concrete slab is still smaller than
that of the air temperature. This means standard deviation of structural temperature at the boundary
(strictly speaking is near the boundary) is mainly controlled by statistics of the environmental temperature.

6.3. Example 3

In the previous examples, the hydration heat of concrete was not involved. Suppose that the parameters
of hydration heat 0, and m; are all Gaussian distributed and the variance coefficients are all 0.2. The ex-
pectation of the temperature at the point x = 1.3 m is shown in Fig. 3. Corresponding standard deviation is
given in Fig. 4. Monte-Carlo simulation results are listed both in Figs. 3 and 4. Auto-correlation coefficient
function on time axis is shown in Fig. 5. As the sizes of slab along y-axis and z-axis are infinitive, the auto-
correlation coefficient functions along y-axis and z-axis are equal to 1.0. Auto-correlation coefficient
function along x-axis is shown in Fig. 6.

From Figs. 3 and 4, it can be seen that at the beginning period of construction the standard deviation of
temperature, because of the hydration heat of concrete, increases together with the expectation of tem-
perature. However, at the later period (after about seven days), the influence of hydration heat diminishes
and vanishes after about 90 days. The expectation of temperature gradually tends to be that of the case

<
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£ --Monte-Carlo f
2 --No hydration heat| -
o v
c : :
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0O 50 100 150 200 250 300 350

Time (Day)

Fig. 3. Expectation of temperature (x = 1.3 m).
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Fig. 4. Standard deviation of temperature (x = 1.3 m).
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Fig. 5. Auto-correlation function on time axis.

without hydration heat (see Fig. 3). In Fig. 3, the cosine curve is caused only by the environmental tem-
perature. After about 90 days, the temperature becomes the same with that of the case without hydra-
tion heat. Meanwhile, as a periodic random process can be regarded as a stationary random process,
the standard deviation, hence, should be constant, the standard deviation of the temperature of the con-
crete slab at x = 1.3 m becomes a constant (about 0.9934, the same with the value in Table 2) after about
90 days.

It can be concluded from this example that for the specific problem the auto-correlation of the tem-
perature on time axis will become zero when the time interval is bigger than about 120 days. This indicates
that when thermal stresses need be calculated, the temperature of mass concrete structures should be re-
garded as a random process. Moreover, as the size of the concrete slab along the x-axis is negligible in

comparison with that of y-axis and z-axis, the random temperature is strongly auto-correlated along the
x-axis except that of the boundary.
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Coefficient of Covariance of Temperature

Fig. 6. Auto-correlation function on x-axis.

7. Conclusions

Owing to the various kinds of random factors, it is usually very difficult and complicated to calculate
random temperature field of mass concrete structures. When only the random property of environmental
temperature needs to be taken into account, the spectral finite element method suggested by Bazant and
Wang is a very efficient method. Although for this simple case the suggested stochastic finite element
method can also be implemented, it appears that it is not necessary to use this advanced tool. It is important
that the difference between the spectral finite element method and the suggested stochastic finite element, in
this case, is that the complex frequency response function used by the spectral finite element is a definite
function. In the suggested stochastic finite element method, the complex frequency response function is a
function of random fluctuation of the environmental temperature.

When random properties of material parameters should be further studied, the spectral finite element
method can not be used. By considering the complex frequency response function as a function of both
random fluctuation of environmental temperature and random material parameters, the suggested method
(the stochastic spectral response finite element method) is a useful method for this problem. Moreover, as
the hydration heat of concrete playing a very important role in the temperature field of concrete, should be
regarded as a non-stationary process, it is formidable to calculate its effect when the non-stationary process
is directly dealt with. In this paper, the non-stationary process is simplified by using the first order Taylor
expansion series, and therefore the corresponding stochastic finite element formulas can be obtained.

In short, the suggested methods are useful for the calculation of random temperature field of mass
concrete structures and thermal control of practical engineering where random variability should be taken
into account.

Besides, some more conclusions can be obtained:

1. During the beginning period of construction, the hydration heat of concrete plays a dominant part for
the temperature filed of concrete structures. The standard deviation increases synchronously with the in-
creasing of the expectation of temperature.

2. During the later period (after about seven days for the specific example), the influences of the hydration
heat of concrete becomes weaker and weaker. The temperature tends to be a periodic one caused only by
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the environmental temperature. The standard deviation of the temperature gradually becomes a con-
stant.

3. At the location near boundary, the temperature of concrete is largely dependent upon the environmental
temperature during both construction period and operation period. However, owing to the heat conduc-
tion and random material parameters, the standard deviation of the temperature is not zero even at the
boundary, where the environmental temperature is a constant. Moreover, for the specific example, the
standard deviation of the temperature of concrete at the boundary is smaller than the standard deviation
of environmental temperature although the variability of both material parameters and environmental
temperature is taken into account.

4. When thermal stresses need to be calculated, the temperature of the concrete should be regarded as a
random process on time axis. It is also concluded that when the thickness is negligible, compared with
the size of other two directions, the auto-correlation function along the direction of thickness is about 1.0
except for that of the boundary. In practical engineering of mass concrete structures such as concrete
dams, the concrete structures are usually constructed layer by layer (especially in the case of RCC or
RCD dams). Therefore, when calculating the thermal stress, the random temperature field of concrete
within a layer can be regarded as a random variable along the vertical direction.

Acknowledgements

This research is supported by the Chinese National Natural Science Foundations (no. 59739180 and
59809003), and kindly encouraged by Prof. Liu G.T. of Tsinghua University, Beijing, P.R. China.

Appendix A. Local average method for 3-D vector random field

In a local coordinate system o}xy;z., it is supposed that in the o/xy/ plane, the correlation function of the
random field is a 2-D function p\)(Ax,, Ay/) without varying with the value of z,. While, along the z, axis, the
correlation function is a 1-D function pg’)(Azg) without varying with the value of x/, y. This random field is

thus called 3-D partly separable random field. Moreover, if P(1l2) (Ax, Ay}) is also separable, the random field
becomes a perfectly separable random field. In the global space, i.e. in the global coordinate system, there
may be several such kind of random fields. The 3-D vector random field is supposed to consist of these local
(scalar) random fields.

It can be seen that there are four advantages in using these random fields to describe a practical engi-
neering. Firstly, the 3-D properties of actual random field can be approximately reflected. Secondly, it is not
very difficult to simulate the random field in terms of numerical discretization in conjunction with SFEM.
Thirdly, it is very easy to reduce the random field model to that of 2-D or 1-D cases. For instance, if
pgD(Az;) is set to be 1, the ith local random field becomes 2-D random fields. Or if pgiz)(Ax;,Ay;) =1, the
random field becomes 1-D. Finally, every local (scalar) random field is defined in its own local coordinate
system and these local coordinate systems form a mixed coordinate system, which, however, has the same
global coordinate system. Therefore, it is convenient to choose one or more local random fields to simulate
the realistic random fields, if necessary.

Suppose the vector random field {S(x,y,z)} consists of n local scalar random field: S:(x|,),2}),

So (x5, 35,25), -, Su(x, ¥, 2. ). In the global coordinate system, the correlation structure can be expressed as
a matrix of correlation function [p;;(Ax, Ay, Az)] (i,j = 1,2,...,n), in which, when i = j, we have
pii(Ax, Ay, Az) = p (A, Ay, AZ))  (i=j=1,2,....n) (A1)

in which, p"(-) is correlation function of the ith random field S;(x},)/,Z,) in the local coordinate system
U

olxyz). If the orientation cosine of the ith local coordinate system is (/;, m;, n,)(x,y,z), we have



N. Liu et al. | International Journal of Solids and Structures 38 (2001) 6965-6983 6981

(Ax,, Ay, AZ)" = TV (Ax, Ay, Az)"

TT lix liy liz
T(,> = T:ﬂ = | My My Mg (AZ)
T;,rl Nix niy nj;
Therefore
pi;(Ax, Ay, Az) = p(T}D,,, TI D,,, T'Dy) (i=/=1,2,...,n) (A.3)

in which Dy, = (Ax, Ay, Az)".
For a scalar random field S(x,y,z), the local average in the element V; can be written as follows:

SVl:l///S(x,y,z)dxdydz (A4)
Vi Vi

If the element V; is a 3-D iso-parametric element, the above equation can be expressed as

ZS Eka 7]1{7 Ck)lJ‘ka

’kl

%:mek
k=1

in which S(&, n,, {;) is the value of S(x,y,z) at the kth Gaussian point within the ith element; &, 1, {; are
the local coordinates of the kth Gaussian point; H, is the Gaussian weighted coefficient; n, is the number of
Gaussian points; |J| is the Jacobi determinant. If the random field S(x,y,z) is homogeneous with mean
value m and standard deviation o, from Eq. (A.6), it is obtained that

(A.5)

E[SV ZE ék? M (k)]Hk"”k =m

cov[Si, Sy] = E[(S — E(Sn)) (Sy; — E(Sy))]

1 ”g ng
~E v ZZHk|J|kHI|J|1(SV1k — E(Sm)) (Syjr — E(Si1))
J k=1 k=1
= ZW,AWJICOV SVk>Sle} (A6)
=1 =1

in which Sy = Sy (&, i, &)y Svir = Sy(€r,my, (), and
wi = H|J |, Vi, wi = Hi|J|,/V; (A7)
cov Sy, Syit) = > p(Axix 1, Avieji, Az jr) '

where COV(SV,k,SVﬂ) is the covariance between the kth Gaussian point in the ith element and the /th
Gaussian point in the jth element; p(Axik, ity Ak ji, Az, j;) is the corresponding correlation function

P (Axik,jl, Ayik,jl; AZile) = P12 (TITDik,jl, T;Dik,jl> P3 (T}Dik,jl> (A.8)

in which Axy ;(x,y,z) is the projective distance between the two Gaussian points on the x (x,y,z) axis,
which can be written in the finite element format
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ng

Axy = Z[(Nm)zxjm - (Np)kxim:|7 (x,»,2) (A9)

m=1

where (N,,), and (N,,), are the value of shape function at the /th and kth Gaussian point with respect to the
mth node, respectively; x;, and x;, are x coordinates at the mth node of the jth and the ith elements, re-
spectively.

As for the 3-D vector random field, the auto-correlation function of the local average of each component
random field can be obtained from the above equations, while the cross-correlation function between the
local averages of different component random fields can be described as follows

ng ng
COV(S(V[;),S/(-;])) = ZZwikw,-,cov {S%’,E,Sg?}, (i # ) (A.10)
k=1 I=1
in which
cov {S(V‘Z’k’, S%I)} = 0p04Py; (Axik‘/la Ayiejis AZtk.,jl) (A.11)

where S(‘f,z, S,(,;’I) are the local averages at the kth and the /th Gaussian point of the pth and the gth scalar

random fields in the ith and jth elements, respectively. o, and o, are the standard deviation of the pth and
the gth homogeneous random field, respectively.

From the above descriptions, it is clear that after the finite element meshes and the auto-correlation or
cross-correlation functions of scalar random fields have been obtained, the overall random fields can be
approximately represented by a number of correlated random variables.
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